

YOUR DOCTOR HAS ORDERED A STRESS TEST WITH

Cardiolite®

A Patient Guide to Help Answer Your Questions About the Test

Lantheus Medical Imaging provided this booklet as a service to your doctor. Your doctor has directed you to our website to help you understand this test. The booklet does not provide complete information about your stress test or Cardiolite®. It cannot replace talking with your doctor about the test. If you have questions after reading this booklet, discuss them with your doctor.

Please see Important Safety Information for Cardiolite® on page 5 and Full Prescribing Information on pages 7-9.

What is a stress test?

A stress test is used by doctors to diagnose heart disease. If your doctor wants you to have a stress test, you may have symptoms of heart disease or certain risk factors for it. Not everyone who has a stress test has heart disease. Your test results can help your doctor determine if you have disease or if you may be at risk for a heart attack.

What is Cardiolite®?

Cardiolite® is an imaging agent used in stress tests to see how well blood is flowing to and through your heart. If you have a stress test with Cardiolite®, your doctor will inject you with a small amount of radioactive Cardiolite® and use a special camera to take pictures of your heart. Please discuss any concerns regarding this procedure with your doctor.

Why does my doctor want me to have this test?

There are several reasons you may be asked to have a stress test with Cardiolite®:

YOUR DOCTOR SUSPECTS YOU MAY HAVE HEART DISEASE AND WANTS TO CONFIRM IT. Your doctor may suspect coronary artery disease if you have chest pressure or other symptoms. Having certain risk factors such as high blood pressure or family history of heart disease could also increase your chance of having coronary artery disease. It's important to be tested, because some people with heart disease feel no symptoms at all.

YOUR DOCTOR ALREADY KNOWS YOU HAVE HEART DISEASE AND WANTS TO MONITOR YOUR CONDITION. If you have already been diagnosed with heart disease, your doctor may ask for a stress test to:

- Look for any heart damage you may have
- Track the progress of your condition and assess your risk for problems in the future
- Determine how well your treatment is working

A stress test with Cardiolite® provides information about how well blood is flowing to your heart and how well your heart is working.

How does the test work?

A test with Cardiolite® usually consists of taking pictures of your heart in two phases: a stress phase and a resting phase.

Where are stress tests given?

Stress tests are given in special offices called nuclear medicine or nuclear cardiology labs. The labs may be in hospitals or in outpatient offices.

Who performs stress tests?

Stress tests are performed by healthcare providers specially trained to give them. Your test may be given by a qualified healthcare provider such as a doctor, nurse, or technologist.

How long will the test take?

Stress tests may be completed in 1 day or on 2 separate days. Normally, the test takes 2 to 4 hours to complete. If your test is done on 2 separate days, it will take about 2 hours each day.

How should I prepare for the test?

Follow your doctor's advice when preparing for the test. He or she may tell you:

- Not to eat or drink for several hours before the test.
 Patients with diabetes may receive special orders.
- Not to take some of your medicines before the test.
 Your doctor will tell you which ones not to take.
- To avoid caffeine for 24 hours before the test.
 Caffeine may affect your results. When you make your appointment, the staff at the lab may offer even more advice. For example, they may tell you to:
 - Bring a list of all your medicines with you. The staff will ask you to name all the medicines you take, even the ones you may not be taking on that day.
 - Wear loose, comfortable clothing for the exercise phase of the test. Wear footwear with non-skid soles, too.
 - You may be asked to exercise as hard as you can, and these items may increase your comfort.

What will happen during the stress phase of the test?

A stress test is used by your doctor to determine whether or not you have heart disease. Your stress test may contain two phases, a resting phase and a stress phase. Your doctor will inform you of the order of the phases. To begin, the staff will place a small IV line in your arm. During the test you will be injected with medicine through this IV line. You may also have small pads (known as electrocardiogram or ECG electrodes) attached to your body. The pads will allow the staff to monitor your heart rate.

The stress phase of the test depends on the type of stress used:

IF YOU ARE ABLE TO EXERCISE:

You will exercise on a treadmill or bicycle. When you reach your peak exercise level, you will be injected with Cardiolite[®]. The Cardiolite[®] will travel through your bloodstream to your heart. Speak up right away if you become short of breath, feel pain in your arm or chest, or get tired at any time during the test.

IF YOU ARE UNABLE TO EXERCISE:

You will be given medicine through the IV line. This medicine will affect your heart in a way that is similar to exercise. You will also be injected with Cardiolite®. The Cardiolite® will travel through your bloodstream to your heart. Speak up right away if you become short of breath, feel pain in your chest, or feel any other symptoms at any time during the test. Whether your stress is from exercise or a drug, the last part of the stress phase is the same. You will either be lying down on a table or sitting in a chair while a type of camera called a gamma camera takes images of your heart.

The camera "sees" the Cardiolite® in your heart and uses it to help create the pictures of your heart.

What will happen during the resting phase of the test?

The resting phase may occur before or after the stress phase, as determined by your doctor. Cardiolite® will be injected while you are resting. After that, more pictures will be taken. This set of pictures will show the flow of blood through your heart at rest.

How will I receive my test results?

The doctor at the lab will compare your two sets of pictures and send a report to your doctor. Your doctor will then discuss the results with you.

INDICATIONS AND USAGE:

Myocardial Imaging: CARDIOLITE® (Kit for the Preparation of Technetium Tc99m Sestamibi for Injection), is a myocardial perfusion agent that is indicated for detecting coronary artery disease by localizing myocardial ischemia (reversible defects) and infarction (non-reversible defects), in evaluating myocardial function and developing information for use in patient management decisions. CARDIOLITE® evaluation of myocardial ischemia can be accomplished with rest and cardiovascular stress techniques (e.g. exercise or pharmacologic stress in accordance with the pharmacologic stress agent's labeling).

CONTRAINDICATIONS:

None known

IMPORTANT SAFETY INFORMATION:

CARDIOLITE® has been rarely associated with acute severe allergic and anaphylactic events of angioedema and generalized urticaria. In some patients the allergic symptoms developed on the second injection during CARDIOLITE® imaging. The most frequently reported adverse events include headache, chest pain/angina, ST segment changes on ECG, nausea, and abnormal taste and smell.

Infrequently, death has occurred 4 to 24 hours after Tc99m Sestamibi use and is usually associated with exercise stress testing (See Section 5.2). Pharmacologic induction of cardiovascular stress may be associated with serious adverse events such as myocardial infarction, arrhythmia, hypotension, bronchoconstriction and cerebrovascular events.

WARNINGS AND PRECAUTIONS:

In studying patients in whom cardiac disease is known or suspected, care should be taken to assure continuous monitoring and treatment in accordance with safe, accepted clinical procedure.

Caution should be exercised and emergency equipment should be available when administering CARDIOLITE®.

Before administering CARDIOLITE® patients should be asked about the possibility of allergic reactions to either CARDIOLITE® or MIRALUMA®. MIRALUMA® is an identical compound used in breast imaging.

The contents of the vial are intended only for use in the preparation of Technetium Tc99m Sestamibi and are not to be administered directly to the patient without first undergoing the preparative procedure.

Please see full Prescribing Information on pages 7-9.

REFERENCES:

- 1. National Heart, Lung, and Blood Institute. Nuclear Heart Scan. Accessed 2/7/2020 www.nhlbi.nih.gov/health-topics/nuclear-heart-scan
- 2. American Heart Association. Diagnosing a Heart Attack. Accessed 2/7/2020 https://www.heart.org/en/health-topics/heart-attack/diagnosing-a-heart-attack
- 3. American Heart Association Myocardial Perfusion Imaging (MPI) Test. Accessed 2/7/2020 https://www.heart.org/en/health-topics/heart-attack/diagnosing-a-heart-attack/myocardial-perfusion-imaging-mpi-test
- **4.** Mayo Clinic>Patient Care & Health Information>Tests and Procedures>Nuclear StressTest. Accessed 2/7/2020

https://www.mayoclinic.org/tests-procedures/nuclear-stress-test/about/pac-20385231?p=1

5. Green County Medical Center.com>filesimages>brochures>nuclear stress test. https://www.gcmchealth.com/filesimages/brochures/Nuclear%20Stress%20Test%20website.pdf

Lantheus Medical Imaging 331 Treble Cove Road • N. Billerica, MA 01862

WWW.CARDIOLITE.COM

513121-0619

CARDIOLI Kit for the Preparation of Technetium Tc99m Sestamibi for Injection

FOR DIAGNOSTIC USE

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use CARDIOLITE® safely and effectively. See full prescribing information for CARDIOLITE®.

CARDIOLITE®. Kit for the Preparation of Technetium Tc99m Sestamibi for Injection. Initial U.S. Approval: December, 1990

--INDICATIONS AND USAGE-

CARDIOLITE® is a myocardial perfusion agent indicated for

 detecting coronary artery disease by localizing myocardial ischemia (reversible defects) and infarction (non-reversible defects)

evaluating myocardial function and developing information for use in patient management decisions

-- DOSAGE AND ADMINISTRATION

- For Myocardial Imaging: The suggested dose range for I.V. administration of CARDIOLITE® in a single dose to be employed in the average patient (70 Kg) is 370 - 1110 MBg (10 - 30 mCi).
- · For Breast Imaging: The recommended dose range for I.V. administration of MIRALUMA® is a single dose of 740 - 1110 MBq (20 - 30 mCi).

--DOSAGE FORMS AND STRENGTHS--

• CARDIOLITE®, Kit for the Preparation of Technetium Tc99m Sestamibi for Injection is supplied as a lyophilized mixture in a 5 mL vial.

-CONTRAINDICATIONS-

None known

-WARNINGS AND PRECAUTIONS---

- Pharmacologic induction of cardiovascular stress may be associated with serious adverse events such as myocardial infarction, arrhythmia, hypotension, bronchoconstriction and cerebrovascular events.
- CARDIOLITE® has been rarely associated with acute severe allergic and anaphylactic. events of angioedema and generalized urticaria. In some nations the allergic symptoms developed on the second injection during CARDIOLITE® imaging.
- · Caution should be exercised and emergency equipment should be available when administering CARDIOLITE®.
- Before administering CARDIOLITE® patients should be asked about the possibility of allergic reactions to either drug.
- The contents of the vial are intended only for use in the preparation of Technetium Tc99m Sestamibi and are not to be administered directly to the patient without first undergoing the preparative procedure

---ADVERSE REACTIONS-

• The following adverse reactions have been reported in $\leq 0.5\%$ of patients: signs and symptoms consistent with seizure occurring shortly after administration of the agent; transient arthritis, angioedema, arrythmia, dizziness, syncope, abdominal pain, vomiting, and severe hypersensitivity characterized by dyspnea, hypotension, bradycardia, asthenia, and vomiting within two hours after a second injection of Technetium Tc99m Sestamibi. A few cases of flushing, edema, injection site inflammation, dry mouth, fever, pruritis, rash, urticaria and fatigue have also been attributed to administration of the agent.

To report SUSPECTED ADVERSE REACTIONS, contact Lantheus Medical Imaging, Inc. at 1-800-362-2668 or FDA at 1-800-FDA-1088 or

www.fda.gov/medwatch

-- DRUG INTERACTIONS-

. Specific drug-drug interactions have not been studied.

--- USE IN SPECIFIC POPULATIONS-

- In one study of 46 subjects who received CARDIOLITE® administration, the radioactivity in both children and adolescents exhibited blood PK profiles similar to those previously reported in adults.
- Lactation: Interruption of breastfeeding after exposure to Technetium Tc99m Sestamibi is not necessary, however, a lactating woman should be advised to consider restricting close contact with her breast fed infant to a maximum of 5 hours in the 24 hour period after Technetium Tc99m Sestamibi administration in order to minimize radiation exposure. (8.2)

See 17 FOR PATIENT COUNSELING INFORMATION

Revised: December 2019 513121-0619

FULL PRESCRIBING INFORMATION: CONTENTS*

- INDICATIONS AND USAGE
- DOSAGE AND ADMINISTRATION
- 2.1 Image Acquisition
- 2.2 Radiation Dosimetry
- 2.3 Instructions For Preparation
- 2.4 Determination of Radiochemical Purity in Technetium Tc99m Sestamibi
- DOSAGE FORMS AND STRENGTHS
- CONTRAINDICATIONS
- WARNINGS AND PRECAUTIONS
- 5.1 Warnings
- 5.2 General Precautions
- ADVERSE REACTIONS DRUG INTERACTIONS
- USE IN SPECIFIC POPULATIONS
 - 8.1 Pregnancy
 - 8.2 Lactation
 - 8.4 Pediatric Use
- 8.5 Geriatric Use
- OVERDOSAGE
- DESCRIPTION
 - Physical Characteristics
 - 11.2 External Radiation
- CLINICAL PHARMACOLOGY
 - 12.1 Mechanism of Action 12.3 Pharmacokinetics
 - 12.3.1 Metabolism
 - 12.3.2 Elimination
- NONCLINICAL TOXICOLOGY
- 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility CLINICAL STUDIES
- HOW SUPPLIED/STORAGE AND HANDLING 16.
- PATIENT COUNSELING INFORMATION 17.

*Sections or subsections omitted from the full prescribing information are not listed.

Myocardial Imaging: CARDIOLITE® Kit for the Preparation of Technetium Tc99m Sestamibi for Injection, is a myocardial perfusion agent that is indicated for detecting coronary artery disease by localizing myocardial ischemia (reversible defects) and infarction (non-reversible defects), in evaluating myocardial function and developing information for use in patient management decisions. CARDIOLITE® evaluation of myocardial ischemia can be accomplished with rest and cardiovascular stress techniques (e.g., exercise or pharmacologic stress in accordance with the pharmacologic stress agent's labeling).

It is usually not possible to determine the age of a myocardial infarction or to differentiate a recent myocardial infarction from ischemia. Breast Imaging: MIRALUMA®, Kit for the Preparation of Technetium Tc99m

Sestamihi for Injection, is indicated for planar imaging as a second line diagnostic. drug after mammography to assist in the evaluation of breast lesions in patients with an abnormal mammogram or a palpable breast mass.

MIRALUMA® is not indicated for breast cancer screening, to confirm the presence or absence of malignancy, and it is not an alternative to biopsy.

2. DOSAGE AND ADMINISTRATION

For Myocardial Imaging: The suggested dose range for L.V. administration of CARDIOLITE® in a single dose to be employed in the average patient (70 Kg) is 370 - 1110 MBq (10 - 30 mCi).

For Breast Imaging: The recommended dose range for I.V. administration of MIRALUMA® is a single dose of 740 - 1110 MBq (20 - 30 mCi).

2.1 Image Acquisition

Breast Imaging: It is recommended that images are obtained with a table overlay to separate breast tissue from the myocardium and liver, and to exclude potential activity that may be present in the opposite breast. For lateral images, position the patient prone with the isolateral arm comfortably above the head, shoulders flat against the table, head turned to the side and relaxed, with the breast imaged pendent through an overlay cutout. The breast should not be compressed on the overlay. For anterior images, position the patient supine with both arms behind the head. For either lateral or anterior images, shield the chest and abdominal organs, or remove them from the field of view.

For complete study, sets of images should be obtained five minutes after the injection, and in the following sequence:

Beginning five minutes after the injection of Technetium Tc99m Sestamibi:

- · ten-minute lateral image of breast with abnormality
- ten-minute lateral image of contralateral breast
- · ten-minute anterior image of both breasts

The radiation doses to organs and tissues of an average patient (70 Kg) per 1110 MBn (30 mCi) of Technetium Tc99m Sestamibi injected intravenously are shown

Table 1.0. Radiation Absorbed Doses from Tc99m Sestamib

Estimated Radiation Absorbed Dose 2.0 hour void mGv mGv/ rads/ rads/ 30 mCi 1110 MBc 30 mCi 1110 MBa Breasts 0.2 2.0 0.2 Gallbladder Wall 2.0 20.0 2 0 20.0 3.0 Small Intestine 30.0 3.0 30.0 Upper Large Intestine 5.4 55.5 5.4 55.5 Lower Large Intestine 3.9 40.0 4.2 41.1 Stomach Wall 0.6 0.6 6.1 5.8 Heart Wall 0.5 5.1 0.5 4.9 Kidnevs 2.0 20.0 2.0 20.0 Liver 0.6 5.8 0.6 5.7 28 27 Lunas 0.3 0.3 6.8 Bone Surfaces 0.7 0.7 6.4 7.0 7.0 0.7 0.7 Thyroid 15.5 15.5 Ovaries

5.1

20.0

48

3.9

5.0

41.1

4.8

0.5

4.2

0.5

0.3

0.5

2.0

0.5

		STI	RESS	
	2.0 h	our void	4.8 h	our void
	rads/	mGy/	rads/	mGy/
)rgan	30 mCi	1110 MBq	30 mCi	1110 MBq
Breasts	0.2	2.0	0.2	1.8
Gallbladder Wall	2.8	28.9	2.8	27.8
Small Intestine	2.4	24.4	2.4	24.4
Jpper Large Intestine				
Vall	4.5	44.4	4.5	44.4
ower Large Intestine				
Vall	3.3	32.2	3.3	32.2
Stomach Wall	0.6	5.3	0.5	5.2
leart Wall	0.5	5.6	0.5	5.3
lidneys	1.7	16.7	1.7	16.7
iver	0.4	4.2	0.4	4.1
ungs	0.3	2.6	0.2	2.4
Bone Surfaces	0.6	6.2	0.6	6.0
hyroid	0.3	2.7	0.2	2.4
)varies	1.2	12.2	1.3	13.3
estes	0.3	3.1	0.3	3.4
Red Marrow	0.5	4.6	0.5	4.4
Jrinary Bladder Wall	1.5	15.5	3.0	30.0
otal Body	0.4	4.2	0.4	4.2

Radiation dosimetry calculations performed by Radiation Internal Dose Information Center, Oak Ridge Institute for Science and Education, PO Box 117, Oak Ridge, TN

2.3 Instructions For Preparation

Preparation of the Technetium Tc99m Sestamibi from the Kit for the Preparation of Technetium Tc99m Sestamibi is done by the following asentic procedure

General Procedure

Testes

Red Marrow

Total Body

Urinary Bladder Wall

- Prior to adding the Sodium Pertechnetate Tc99m Injection to the vial, inspect the vial carefully for the presence of damage, particularly cracks, and do not use the vial if found. Tear off a radiation symbol and attach it to the neck of the vial.
- Waterproof gloves should be worn during the preparation procedure. Remove the plastic disc from the vial and swab the top of the vial closure with alcohol to sanitize the surface.

Boiling Water Bath Procedure:

- Place the vial in a suitable radiation shield with a fitted radiation cap.
- With a sterile shielded syringe, aseptically obtain additive-free, sterile, non-pyrogenic Sodium Pertechnetate Tc99m Injection 1925 - 5550 MBg (25 - 150 mCi)1 in approximately 1 to 3 mL.
- Aseptically add the Sodium Pertechnetate Tc99m Injection to the vial in the lead shield. Without withdrawing the needle, remove an equal volume of headspace to maintain atmospheric pressure within the vial.
- Shake vigorously, about 5 to 10 quick upward-downward motions.
- Remove the vial from the lead shield and place unright in an appropriately shielded and contained boiling water bath, such that the vial is suspended above the bottom of the bath, and boil for 10 minutes. Timing for 10 minutes is begun as soon as the water begins to boil again. Do not allow the boiling water to come in contact with the aluminum crimp.
- Remove the vial from the water bath, place in the lead shield and allow to cool for fifteen minutes

Recon-o-Stat (thermal cycler) Procedure:

- Place the vial in the thermal cycler radiation shield.
- With a sterile shielded syringe, aseptically obtain additive-free, sterile, non-pyrogenic Sodium Pertechnetate Tc99m Injection [925 - 5550 MBg, (25 - 150 mCi)1 in approximately 1 to 3 mL.
- Aseptically add the Sodium Pertechnetate Tc99m Injection to the vial in the lead shield. Without withdrawing the needle, remove an equal volume of headspace to maintain atmospheric pressure within the vial.

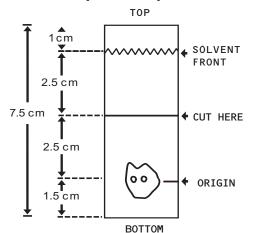
- Shake vigorously, about 5 to 10 quick upward-downward motions.
- Place shield on sample block. While slightly pressing downward, give the shield a quarter turn to make certain there is a firm fit between the shield and the sample block.
- Press the proceed button to initiate the program (the thermal cycler automatically heats & cools the vial and contents). Please see the Recon-o-Stat Instruction Manual for further details.

General Procedure (cont.):

- Using proper shielding, the vial contents should be visually inspected. Use only if the solution is clear and free of particulate matter and discoloration.
- Assay the reaction vial using a suitable radioactivity calibration system. Record the Technetium Tc99m concentration, total volume, assay time and date, expiration time and lot number on the vial shield label and affix the label
- Store the reaction vial containing the Technetium Tc99m Sestamibi at 15° to 25°C (59-77°F) until use: at such time the product should be asentically withdrawn. Technetium Tc99m Sestamibi should be used within six hours of preparation. The vial contains no preservative.

Note: Adherence to the above product reconstitution instructions is recommended The potential for cracking and significant contamination exists whenever vials containing radioactive material are heated.

Product should be used within 6 hours after preparation.


Final product with radiochemical purity of at least 90% was used in the clinical trials that established safety and effectiveness. The radiochemical purity was determined by the following method.

2.4 Determination of Radiochemical Purity in Technetium Tc99m Sestamibi

- 1 Obtain a Baker-Flex Aluminum Oxide coated, plastic TLC plate, #1 B-E pre-cut to 2.5 cm x 7.5 cm
 - Dry the plate or plates at 100°C for 1 hour and store in a desiccator. Remove pre-dried plate from the desiccator just prior to use.
- Apply 1 drop of ethanol* using a 1 mL syringe with a 22-26 gauge needle, 1.5 cm from the bottom of the plate. THE SPOT SHOULD NOT BE ALLOWED TO DRY.
- Add 2 drops of Technetium Tc99m Sestamibi solution, side by side on top of the ethanol* spot. Return the plate to a desiccator and allow the sample spot to dry (typically 15 minutes).
- The TLC tank is prepared by pouring ethanol* to a depth of 3-4 mm. Cover the tank and let it equilibrate for ~10 minutes
- Develop the plate in the covered TLC tank in ethanol* for a distance of 5 cm from the point of application.
- Cut the TLC plate 4 cm from the bottom and measure the Tc99m activity in each piece by appropriate radiation detector.
- Calculate the % Tc99m Sestamibi as:

% Tc99m Sestamibi = µCi Top Piece X 100 uCi Both Pieces

Figure 1.0 TLC Plate Diagram

*The ethanol used in this procedure should be 95% or greater. Absolute ethanol (99%) should remain at \geq 95% ethanol content for one week after opening if stored tightly capped, in a cool dry place.

3. DOSAGE FORMS AND STRENGTHS

CARDIOLITE®, Kit for the Preparation of Technetium Tc99m Sestamibi for Injection is supplied as a lyophilized mixture in a 5 mL vial.

4. CONTRAINDICATIONS

None known

5. WARNINGS AND PRECAUTIONS

5.1 Warnings

In studying patients in whom cardiac disease is known or suspected, care should be taken to assure continuous monitoring and treatment in accordance with safe, accepted clinical procedure. Infrequently, death has occurred 4 to 24 hours after Tc99m Sestamibi use and is usually associated with exercise stress testing (See Section 5.2).

Pharmacologic induction of cardiovascular stress may be associated with serious adverse events such as myocardial infarction, arrhythmia, hypotension, bronchoconstriction and cerebrovascular events. Caution should be used when pharmacologic stress is selected as an alternative to exercise: it should be used when indicated and in accordance with the pharmacologic stress agent's labeling

Technetium Tc99m Sestamibi has been rarely associated with acute severe allergic and anaphylactic events of angioedema and generalized urticaria. In some patients the allergic symptoms developed on the second injection during CARDIOLITE® imaging. Patients who receive CARDIOLITE® or MIRALUMA® imaging are receiving the same drug. Caution should be exercised and emergency equipment should be available when administering Technetium Tc99m Sestamibi. Also, before administering either CARDIOLITE® or MIRALUMA®, patients should be asked about the possibility of allergic

5.2 General Precautions

The contents of the vial are intended only for use in the preparation of Technetium Tc99m Sestamibi and are not to be administered directly to the patient without first undergoing the preparative procedure

Radioactive drugs must be handled with care and appropriate safety measures should be used to minimize radiation exposure to clinical personnel. Also, care should be taken to minimize radiation exposure to the patients consistent with proper patient

Contents of the kit before preparation are not radioactive. However, after the Sodium Pertechnetate Tc99m Injection is added, adequate shielding of the final preparation must be maintained. The components of the kit are sterile and non-pyrogenic. It is essential to follow directions carefully and to adhere to strict asentic procedures

Technetium Tc99m labeling reactions depend on maintaining the stannous ion in the reduced state. Hence, Sodium Pertechnetate Tc99m Injection containing oxidants should not be used.

Technetium Tc99m Sestamibi should not be used more than six hours after nrenaration

Radiopharmaceuticals should be used only by physicians who are qualified by training and experience in the safe use and handling of radionuclides and whose experience and training have been approved by the appropriate government agency authorized to license the use of radionuclides.

Stress testing should be performed only under the supervision of a qualified physician and in a laboratory equipped with appropriate resuscitation and support apparatus.

The most frequent exercise stress test endpoints sufficient to stop the test reported during controlled studies (two-thirds were cardiac patients) were:

Fatigue	35%
Dyspnea	17%
Chest Pain	16%
ST-depression	7%
Arrhythmia	1%

6. ADVERSE REACTIONS

Adverse events were evaluated in 3741 adults who were evaluated in clinical studies. Of these patients, 3068 (77% men, 22% women, and 0.7% of the patient's genders were not recorded) were in cardiac clinical trials and 673 (100% women) in breast imaging trials. Cases of angina, chest pain, and death have occurred (see Section 5). Adverse events reported at a rate of 0.5% or greater after receiving Technetium Tc99m Sestamibi administration are shown in the following table:

Table 2.0 Selected Adverse Events Reported in > 0.5% of Patients Who Received Technetium Tc99m Sestamibi in Either Breast or Cardiac Clinical Studies* Breast Studies | Cardiac Studies n = 673 n = 685 n = 2361 n = 3046 Body as a Whole Headache 11 (1.6%) 2 (0.3%) 4 (0.2%) 6 (0.2%) ardiovascula 9 (1.3%) 24 (3.5%) 75 (3.2%) 99 (3.3%) Chest Pain/Angina 18 (2.6%) 46 (1.9%) 64 (2.1%) 0 (0%) ST segment changes 0 (0%) 11 (1.6%) 29 (1.2%) 40 (1.3%) Digestive System 8 (1.2%) 4 (0.6%) 9 (0.4%) 13 (0.4%) Nausea 4 (0.6%) 1 (0.1%) 2 (0.1%) 3 (0.1%) Special Senses 132 (19.6%) 62 (9.1%) 160 (6.8%) 222 (7.3%) 129 (19.2%) 60 (8.8%) 157 (6.6%) 217 (7.1%) Taste Perversion Parosmia 8 (1.2%) 6 (0.9%) 10 (0.4%) 16 (0.5%)

In the clinical studies for breast imaging, breast pain was reported in 12 (1.7%) of the patients. In 11 of these patients the pain appears to be associated with biopsy/

The following adverse reactions have been reported in < 0.5% of patients: signs and symptoms consistent with seizure occurring shortly after administration of the agent; transient arthritis, angioedema, arrythmia, dizziness, syncope, abdominal pain, vomiting, and severe hypersensitivity characterized by dyspnea, hypotension, bradycardia, asthenia, and vomiting within two hours after a second injection of Technetium Tc99m Sestamibi. A few cases of flushing, edema, injection site inflammation, dry mouth, fever, pruritis, rash, urticaria and fatigue have also been attributed to administration of the agent.

7. DRUG INTERACTIONS

Specific drug-drug interactions have not been studied.

*Excludes the 22 patients whose gender was not recorded

8. USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

Limited available data with Technetium Tc99m Sestamibi use in pregnant women have not identified a drug-associated risk of major birth defects, miscarriage, or adverse maternal or fetal outcomes. Animal reproduction and teratogenicity studies have not been conducted with Technetium Tc99m Sestamibi. However,

all radiopharmaceuticals have the potential to cause fetal harm depending on the fetal stage of development and the magnitude of the radiation dose. If considering Technetium Tc99m Sestamibi administration to a pregnant woman, inform the patient about the potential for adverse pregnancy outcomes based on the radiation dose from Technetium Tc99m Sestamibi and the gestational timing of exposure.

All pregnancies have a background risk of birth defects, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.

8.2 Lactation

Risk Summary

Limited data in the scientific literature on the presence of Technetium Tc99m Sestamibi in human milk, demonstrate that between 0.01% and 0.03% of maternal injected activity of technetium Tc99m Sestamibi was excreted in human milk. Technetium Tc99m Sestamibi accumulates in the lactating breast [see Clinical Considerations]. There are limited data in the scientific literature on effects of Technetium Tc99m Sestamibi on the breastfed infant or on milk production. The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for Technetium Tc99m Sestamibi and any potential adverse effects on the breastfed infant from Technetium Tc99m Sestamibi or from the underlying maternal condition.

Clinical Considerations

Interruption of breastfeeding after exposure to Technetium Tc99m Sestamibi is not necessary because Technetium Tc99m Sestamibi excretion in breast milk is low. However, a lactating woman may restrict close contact with her breast fed infant to a maximum of 5 hours in the 24 hour period after Technetium Tc99m Sestamibi administration in order to minimize radiation exposure.

8.4 Pediatric Use

Safety and effectiveness in the pediatric population have not been established.

No evidence of diagnostic efficacy or clinical utility of CARDIOLITE® scan was found in clinical studies of children and adolescents with Kawasaki disease.

A prospective study of 445 pediatric patients with Kawasaki disease was designed to determine the predictive value of CARDIOLITE® rest and stress myocardial perfusion imaging to define a pediatric population with Kawasaki disease that was at risk of developing cardiac events. Cardiac events were defined as cardiac death, MI, hospitalization due to cardiac etiology, heart failure, CABG or coronary angioplasty. The standard of truth was defined as cardiac events occurring 6 months following the administration of CARDIOLITE®. Only three cardiac events were observed at six months in this study. In all three cases, the scan was negative. No clinically meaningful measurements of sensitivity, specificity or other diagnostic performance parameters could be demonstrated in this study.

A ten year retrospective case history study of pediatric Kawasaki disease patients who completed CARDIOLITE® myocardial perfusion imaging and who had coronary angiography within three months of the CARDIOLITE® scan was designed to measure sensitivity and specificity of CARDIOLITE® scan. Out of 72 patients who had both evaluable CARDIOLITE® scans and evaluable angiographic images, only one patient had both an abnormal angiogram and an abnormal CARDIOLITE® scan. No clinically meaningful measurements of sensitivity, specificity or other diagnostic performance parameters could be demonstrated in this study.

In a clinical pharmacology study, 46 pediatric patients with Kawasaki disease received CARDIOLITE® administration at the following doses: 0.1 - 0.2 mCi/kg for rest, 0.3 mCi/kg for stress in one day studies; 0.2 mCi/kg for rest and 0.2 mCi/kg for stress in two day studies.

The radioactivity both in younger children and in adolescents exhibited PK profiles similar to those previously reported in adults (See Section 12).

The radiation absorbed doses in adolescents, both at rest and stress, were similar to those observed in adults (see Section 2). When comparing weight-adjusted radioactivity (up to 0.3~mCi/kg) doses administered to adolescents and younger children to the recommended dose administered to adults (up to 30~mCi), the radiation absorbed doses in both adolescents and younger children were similar to those in adults.

Adverse events were evaluated in 609 pediatric patients from the three clinical studies described above. The frequency and the type of the adverse events were similar to the ones observed in the studies of CARDIOLITE® in adults. Two of the 609 had a serious adverse event: one patient received a CARDIOLITE® overdose but remained asymptomatic, and one patient had an asthma exacerbation following administration.

8.5 Geriatric Use

Of 3068 patients in clinical studies of CARDIOLITE®, Kit for the Preparation of Technetium Tc99m Sestamibi for Injection, 693 patients were 65 or older and 121 were 75 or older.

Of 673 patients in clinical studies of MIRALUMA®, Kit for the Preparation of Technetium Tc99m Sestamibi for Injection, 138 patients were 65 or older and 30 were 75 or older.

Based on the evaluation of the frequency of adverse events and review of vital signs data, no overall differences in safety were observed between these subjects and younger subjects. Although reported clinical experience has not identified differences in response between elderly and younger patients, greater sensitivity of some older individuals cannot be ruled out.

10. OVERDOSAGE

The clinical consequences of overdosing with CARDIOLITE® are not known.

11 DESCRIPTION

Each 5 mL vial contains a sterile, non-pyrogenic, lyophilized mixture of:

- Tetrakis (2-methoxy isobutyl isonitrile) Copper (I) tetrafluoroborate 1.0 mg
- Sodium Citrate Dihydrate 2.6 mg
- L-Cysteine Hydrochloride Monohydrate 1.0 mg
- Mannitol 20 mg
- Stannous Chloride, Dihydrate, minimum (SnCl₂•2H₂0) 0.025 mg

- Stannous Chloride, Dihydrate, (SnCl₂•2H₂O) 0.075 mg
- Tin Chloride (stannous and stannic) Dihydrate, maximum (as SnCl₂•2H₂0) -0.086 mg

Prior to lyophilization the pH is 5.3 to 5.9. The contents of the vial are lyophilized and stored under nitrogen.

This drug is administered by intravenous injection for diagnostic use after reconstitution with sterile, non-pyrogenic, oxidant-free Sodium Pertechnetate Tc99m Injection. The pH of the reconstituted product is 5.5 (5.0 - 6.0). No bacteriostatic presentative is present

The precise structure of the technetium complex is Tc99m[MIBI] $_6^+$ where MIBI is 2-methoxy isobutyl isonitrile.

11.1 Physical Characteristics

Technetium Tc99m decays by isomeric transition with a physical half-life of 6.02 hours¹. Photons that are useful for detection and imaging studies are listed below in Table 3.0.

Table 3.0. Principal Radiation Emission Data

	Mean %/	Mean
Radiation	Disintegration	Energy (KeV)
Gamma -2	89.07	140.5

¹Kocher, David, C., Radioactive Decay Data Tables, DOE/TIC-11026, 108(1981).

11.2 External Radiation

The specific gamma ray constant for Tc99m is 5.4 microcoulombs/Kg-MBq-hr (0.78R/mCi-hr) at 1 cm. The first half value layer is 0.017 cm of Pb. A range of values for the relative attenuation of the radiation emitted by this radionuclide that results from interposition of various thicknesses of Pb is shown in Table 4.0. To facilitate control of the radiation exposure from Megabequerel (millicurie) amounts of this radionuclide, the use of a 0.25 cm thickness of Pb will attenuate the radiation emitted by a factor of 1,000.

Table 4.0. Radiation Attenuation by Lead Shielding

lable 4.0. Radiation Attenuation by Lead Snielding				
Coefficient of Attenuation				
0.5				
10 ⁻⁴				
	Coefficient of Attenuation			

To correct for physical decay of this radionuclide, the fractions that remain at selected intervals after the time of calibration are shown in Table 5.0.

Table 5.0. Physical Decay Chart: Tc99m Half-Life 6.02 Hours

Table 5.0. Thysical becay chart, 1695iii Hall-Life 0.02 Hours				
	Fraction		Fraction	
Hours	Remaining	Hours	Remaining	
0*	1.000	8	.398	
1	.891	9	.355	
2	.794	10	.316	
3	.708	11	.282	
4	.631	12	.251	
5	.562			
6	.501			
7	.447			

*Calibration Time

12. CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Technetium Tc99m Sestamibi is a cationic Tc99m complex which has been found to accumulate in viable myocardial tissue in a manner analogous to that of thallous chloride Ti-201. Scintigraphic images obtained in humans after the intravenous administration of the drug have been comparable to those obtained with thallous chloride Ti-201 in normal and abnormal myocardial tissue.

Animal studies have shown that myocardial uptake is not blocked when the sodium pump mechanism is inhibited. Although studies of subcellular fractionation and electron micrographic analysis of heart cell aggregates suggest that Tc99m Sestamibi cellular retention occurs specifically within the mitochondria as a result of electrostatic interactions, the clinical relevance of these findings has not been determined

The mechanism of Tc99m Sestamibi localization in various types of breast tissue (e.g., benign, inflammatory, malignant, fibrous) has not been established.

12 2 Dharmanakination

Pulmonary activity is negligible even immediately after injection. Blood clearance studies indicate that the fast clearing component clears with a $\rm t_{1/2}$ of 4.3 minutes rest, and clears with a $\rm t_{1/2}$ of 1.6 minutes under exercise conditions. At five minutes post injection about 8% of the injected dose remains in circulation. There is less than 1% protein binding of Technetium Tc99m Sestamibi in plasma. The myocardial biological half-life is approximately six hours after a rest or exercise injection. The biological half-life for the liver is approximately 30 minutes after a rest or exercise injection. The effective half-life of clearance (which includes both the biological half-life and radionuclide decay) for the heart is approximately 3 hours, and for the liver is approximately 30 minutes, after a rest or exercise injection. The ideal imaging time reflects the best compromise between heart count rate and surrounding organ uptake. Myocardial uptake which is coronary flow dependent is 1.2% of the injected dose at rest and 1.5% of the injected dose at exercise. Table 6.0 illustrates the biological clearance as well as effective clearance (which includes biological clearance and radionuclide decay) of Tc99m Sestamibi from the heart and liver.

[Organ concentrations expressed as percentage of injected dose; data based on an average of 5 subjects at rest and 5 subjects during exercise].

Table 6.0 Biological and Effective Clearance

STRESS

1.0 0.9

0.3 0.2

0.6

					0111200			
Heart		Liver		He	Heart		Liver	
Time	Biological	Effective	Biological	Effective	Biological	Effective	Biologica	lEffective
5 min.	1.2	1.2	19.6	19.4	1.5	1.5	5.9	5.8
30 mir	n. 1.1	1.0	12.2	11.5	1.4	1.3	4.5	4.2
1 hour	1.0	0.9	5.6	5.0	1.4	1.2	2.4	2.1

0.4

1.7 1.2

1.0

A study in a dog myocardial ischemia model reported that Technetium Tc99m Sestamibi undergoes myocardial distribution (redistribution), although more slowly and less completely than thallous chloride TI-201. A study in a dog myocardial infarction model reported that the drug showed no redistribution of any consequence. Definitive human studies to demonstrate possible redistribution have not been reported. In patients with documented myocardial infarction, imaging revealed the infarct up to four hours post dose.

12.3.1 Metaholism

0.8

0.5

2 hours 1.0

4 hours 0.8

The agent is excreted without any evidence of metabolism.

2.2

0.7

12.3.2 Elimination

The major pathway for clearance of Tc99m Sestamibi is the hepatobiliary system. Activity from the gall bladder appears in the intestines within one hour of injection. Twenty-seven percent of the injected dose is excreted in the urine, and approximately thirty-three percent of the injected dose is cleared through the feces in 48 hours.

13. NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

In comparison with most other diagnostic technetium labeled radiopharmaceuticals, the radiation dose to the ovaries (1.5 rads/30 mCi at rest, 1.2 rads/30 mCi at exercise) is high. Minimal exposure (ALARA) is necessary in women of childbearing capability. (See Section 2.)

The active intermediate, $\text{Cu}(\text{MIBI})_4\text{BF}_4$, was evaluated for genotoxic potential in a battery of five tests. No genotoxic activity was observed in the Ames, CHO/HPRT and sister chromatid exchange tests (all in vitro). At cytotoxic concentrations (> 20 $\mu\text{g/mL}$), an increase in cells with chromosome aberrations was observed in the in vitro human lymphocyte assay. $\text{Cu}(\text{MIBI})_4\text{BF}_4$ did not show genotoxic effects in the in vivo mouse micronucleus test at a dose which caused systemic and bone marrow toxicity (9 mg/kg), < 600 X maximal human dose).

14. CLINICAL STUDIES

CLINICAL TRIALS:

MYOCARDIAL IMAGING: In a trial of rest and stress CARDIOLITE® imaging, the relationship of normal or abnormal perfusion scans and long term cardiac events was evaluated in 521 patients (511 men, 10 women) with stable chest pain. There were 73.9% Caucasians, 25.9% Blacks and 0.2% Asians. The mean age was 59.6 years (range: 29 to 84 years). All patients had a baseline rest and exercise CARDIOLITE® scan and were followed for 13.2 ± 4.9 months (range: 1 to 24 months). Images were correlated with the occurrence of a cardiac event (cardiac death or non-fatal myocardial infarction). In this trial as summarized in Table 7.0, 24/521 (4.6%) had a cardiac event.

Table 7.0 Cardiac Events				
Baseline Scan ^(a) Proportion of patients with events by scan results ^(a)			Proportion of event- free patients by scan result ^(a)	
Normal	1/206 (0.5%)	1/24 (4.2%)	205/206 (99.5%)	
Abnormal	23/315 (7.3%) ^(b)	23/24 (95.8%) ^(b)	292/315 (92.7%) ^(b)	

(a) Note: Similar findings were found in two studies with patients who had pharmacologic stress CARDIOLITE® imaging.

) p<0.01

Although patients with normal images had a lower cardiac event rate than those with abnormal images, in all patients with abnormal images it was not possible to predict which patient would be likely to have further cardiac events; i.e., such individuals were not distinguishable from other patients with abnormal images.

The findings were not evaluated for defect location, disease duration, specific vessel involvement or intervening management.

In earlier trials, using a template consisting of the anterior wall, inferior-posterior wall and isolated apex, localization in the anterior or inferior-posterior wall in patients with suspected angina or coronary artery disease was shown. Disease localization isolated to the apex has not been established. In adults, Tc99m Sestamibi has not been studied or evaluated in cardiac disorders other than coronary artery disease.

BREAST IMAGING: MIRALUMA® was evaluated in two multicenter, clinical trials of a total of 673 woman patients. Overall the mean age was 52 (range 23 to 87 years). The racial and ethnic representation was 70% Caucasian, 15% African-American, 14% Hispanic and 1% Asian.

Both clinical studies evaluated women who were referred for further evaluation for either: 1) a mammographically detected (with varying degrees of malignant likelihood) but not palpable breast lesion (study A, n=387, mean age = 54 years), or 2) a palpable breast lesion (study B, n=286, mean age = 50 years). In both studies all patients were scheduled for bionsy.

MIRALUMA® (20 - 30 mCi) was injected intravenously in a vein that was contralateral to the breast lesion in question. Planar imaging was completed with a high resolution

collimator with a 10% window centered at 140 KeV, and 128 x 128 matrix. An initial marker image, that was not used in the data analysis, was obtained using a cobalt Co57 point source as a marker of a palpable mass. Images were obtained 5 minutes after injection as follows: lateral image of the affected breast for 10 minutes, lateral image of the contralateral breast for 10 minutes, and an anterior image of both breasts for 10 minutes. For the lateral image the patients were positioned in a prone position. For the anterior image, the patients were supine. The MIRALUMA® scintigraphic images were read in a randomized method by two groups of three blinded readers. MIRALUMA® uptake was scored as: normal (no uptake), equivocal, low, moderate, or high uptake. The results of MIRALUMA® images and mammography were analyzed in comparison to histopathologic findings of malignant or non-malignant disease.

As shown in Table 8.0 for the 483 evaluable patients, the sensitivity and specificity of any degree of MIRALUMA® uptake appear to vary with the presence or absence of palpable mass.

TABLE 8.0 Overall MIRALUMA Blinded Results of Target Lesions(a) Identified at Study Entry(b) STATISTIC Non-Palpable Mass and an Palpable Mass Abnormal Mammogram N=277 Patients with 300 N=206 Patients with 240 Number of Patients and Lesions esions Lesions Sensitivity 52(42,62)^{(c} 76(67,83) Specificity 94(89.96) 85(77.91) PPV^(d) 79(67,88) 83(74,89) NPV(d) 80(74.85) 78(69.84) 80(75,85) 80(75.85) Agreement 32(27,37) 49(43.56) Prevalence

- (a) Excludes all discordant lesions not identified at entry and excludes 25 equivocal interpretations from Study A and 32 equivocal interpretations from Study B (see Tables 9.0 and 10.0)
- (b) Some patients had more than one target lesion.
- c) Median and approximated 95% Confidence Interval
- (d) PPV= Positive Predict Value; NPV= Negative Predict Value

 In a separate retrospective subset analyses of 259 patients with dense

(heterogeneously/extremely dense) and 275 patients with fatty (almost entirely fat/ numerous vague densities) breast tissue, the MIRALUMA® results were similar. Overall, the studies were not designed to compare the performance of MIRALUMA® with the performance of mammography in patients with breast densities or other coexistent breast tissue disorders.

In general the histology seems to correlate with the degree of MIRALUMA® uptake. As shown in Tables 9.0 and 10.0, the majority of the normal MIRALUMA® images are associated with non-malignant tissue (78-81%) and the majority of low, moderate or high uptake MIRALUMA® images are associated with malignant disease (79-83%). In an individual patient, however, the intensity of MIRALUMA® uptake can not be used to confirm the presence or absence of malignancy. Equivocal results do not have a correlation with histology.

TABLE 9.0 Degree of MIRALUMA® Breast Imaging Uptake in Comparison to Histopathology Results in Patients with Mammographically Detected Non-Palashie Lesions* (Study A)

Detected Non-Palpable Lesions* (Study A)				
	Normal Uptake N = 249 lesions	Equivocal Uptake N = 25 lesions	Low, Moderate or High Uptake N = 66 lesions	
Non-malignant**	201 (81%)	14 (56%)	14 (21%)	
Malignant	48 (19%)	11 (44%)	52 (79%)	

* Median finding for 3 blinded readers

TABLE 10.0 Degree of MIRALUMA® Breast Imaging Uptake in Comparison to Histopathology Results in Patients with Palpable Lesions* (Study B)

	Normal Uptake N = 129 lesions	Equivocal Uptake N = 32 lesions	Low, Moderate or High Uptake N = 115 lesions
Non-malignant**	100 (78%)	19 (59%)	20 (17%)
Malignant	29 (22%)	13 (41%)	95 (83%)

* Median finding for 3 blinded readers

** Includes benign tissue, fibroadenoma, benign intramammary nodes, radial scar

An estimate of the likelihood of malignancy based on the MIRALUMA® uptake score in combination with the mammographic score has not been studied.

In these two studies approximately 150 additional, non-biopsied lesions were found to be positive after MIRALUMA® imaging. These lesions were identified in sites that did not physically correlate with identified entry criteria mammographic lesions and these lesions were not palpable. These lesions were not biopsied. Whether these lesions were benign or malignant is not known. MIRALUMA® uptake can occur in both benign and malignant disease. THE CLINICAL USEFULNESS OF A POSITIVE MIRALUMA® IMAGE IN THE ABSENCE OF AN ABNORMAL MAMMOGRAM OR A PALPABLE LESION IS NOT KNOWN.

16. HOW SUPPLIED/STORAGE AND HANDLING

CARDIOLITE®, Kit for the Preparation of Technetium Tc99m Sestamibi for Injection is supplied as a 5 mL vial in kits of five (5) vials (NDC # 11994-001-55) and twenty (20) vials (NDC # 11994-001-20), sterile and non-pyrogenic.

The patient dose should be measured by a suitable radioactivity calibration system immediately prior to patient administration. Radiochemical purity should be checked

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit.

Prior to lyophilization the pH is between 5.3-5.9. The contents of the vial are lyophilized and stored under nitrogen. Store at 15-25°C (59-77° F) before and after reconstitution.

Technetium Tc99m Sestamibi contains no preservatives. Included in each five (5) vial kit is one (1) package insert, six (6) vial shield labels and six (6) radiation warning labels. Included in each twenty (20) vial kit is one (1) package insert, twenty four (24) vial shield labels and twenty four (24) radiation warning labels.

This reagent kit is approved for distribution to persons licensed pursuant to the Code of Massachusetts Regulations 105 CMR 120.500 for the uses listed in 105 CMR 120.547 or 120.552, or under equivalent regulations of the U.S. Nuclear Regulatory Commission. Agreement States or Licensing States.

17. PATIENT COUNSELING INFORMATION

CARDIOLITE® and MIRALUMA® are different names for the same drug. Patients should be advised to inform their health care provider if they had an allergic reaction to either drug or if they had an imaging study with either drug.

Lactation: Interruption of breastfeeding after exposure to Technetium Tc99m Sestamibi is not necessary, however, a lactating woman should be advised to consider restricting close contact with her breast fed infant to a maximum of 5 hours in the 24 hour period after Technetium Tc99m Sestamibi administration in order to minimize radiation exposure [see Use in Specific Populations (8.2)].

331 Treble Cove Road N. Billerica, Massachusetts 01862 USA For Ordering Tel: Toll Free: 800-299-3431 All Other Business: 800-362-2668

(For Massachusetts and International call 978-667-9531)

^{**} Includes benign tissue fibroadenoma benign intramammary nodes radial scar